
A

Designing a Million-Qubit Quantum Computer Using Resource
Performance Simulator

Muhammad Ahsan, Duke University, USA
Rodney Van Meter, Keio University, Japan
Jungsang Kim, Duke University, USA

The optimal design of a fault-tolerant quantum computer involves finding an appropriate balance between
the burden of large-scale integration of noisy components and the load of improving the reliability of hard-
ware technology. This balance can be evaluated by quantitatively modeling the execution of quantum logic
operations on a realistic quantum hardware containing limited computational resources. In this work, we
report a complete performance simulation software tool capable of (1) searching the hardware design space
by varying resource architecture and technology parameters, (2) synthesizing and scheduling fault-tolerant
quantum algorithm within the hardware constraints, (3) quantifying the performance metrics such as the
execution time and the failure probability of the algorithm, and (4) analyzing the breakdown of these met-
rics to highlight the performance bottlenecks and visualizing resource utilization to evaluate the adequacy
of the chosen design. Using this tool we investigate a vast design space for implementing key building blocks
of Shor’s algorithm to factor a 1,024-bit number with a baseline budget of 1.5 million qubits. We show that a
trapped-ion quantum computer designed with twice as many qubits and one-tenth of the baseline infidelity
of the communication channel can factor a 2,048-bit integer in less than five months.

CCS Concepts: •Computer systems organization→ Quantum computing; •Hardware→ Quantum
error correction and fault tolerance;

General Terms: Simulation tools, Quantum error correction and fault tolerance

Additional Key Words and Phrases: quantum architecture, architecture scalability, resource performance
trade-offs, performance simulation tool, hardware constraints

ACM Reference Format:
Muhammad Ahsan, Rodney Van Meter and Jungsang Kim, 2015. Designing a Million-Qubit Quantum Com-
puter Using Resource Performance Simulator. ACM J. Emerg. Technol. Comput. Syst. V, N, Article A (Jan-
uary YYYY), 24 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Although quantum computers (QCs) can in principle solve important problems such
as factoring a product of large prime numbers efficiently, the prospect of construct-
ing a practical system is hampered by the need to build reliable systems out of faulty
components [Van Meter and Horsman 2013]. Fault-tolerant procedures utilizing quan-
tum error correcting codes (QECC) achieve adequate error performance by protect-
ing the quantum information from noise, but comes at the expense of substantial re-
source investment [Nielsen and Chuang 2000]. The threshold theorem (or the quan-

This work was funded by Intelligence Advanced Research Projects Activity (IARPA) under the Multi-Qubit
Coherent Operation (MQCO) Program and the Quantum Computer Science (QCS) program.
Author’s addresses: Muhammad Ahsan, Department of Computer Science, Duke University; Rodney Van
Meter, Faculty of Environment and Information Studies, Keio University; Jungsang Kim,Department of
Electrical and Computer Engineering, Duke University.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 1550-4832/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

ar
X

iv
:1

51
2.

00
79

6v
1

 [
qu

an
t-

ph
]

 2
 D

ec
 2

01
5

A:2 M. Ahsan et al.

tum fault-tolerance theorem) says that a quantum computation of arbitrary size can
be performed as long as the error probability of each operation is kept below a certain
threshold value, and sufficient computational resources, such as the number of quan-
tum bits (qubits), can be provided to implement adequate fault tolerance [Aharonov
and Ben-Or 1997]. Although this is an encouraging theoretical result, an accurate es-
timate of the resource overhead remains an extremely complex task, as it depends on
the details of the hardware (qubit connectivity, gate speeds and coherence time, etc.),
the choice of protocols (QECC, etc.), and the nature of the target algorithms. Several
application-optimized architectures have been proposed and analyzed [Metodi et al.
2005; Van Meter et al. 2008; Whitney et al. 2009; Kim and Kim 2009; Monroe et al.
2014; Galiautdinov et al. 2012; Fowler et al. 2012], yet the accurate quantification of
resource-performance scaling for various benchmarks remains a challenging problem.

In this work, we quantitatively define the scalability of a quantum architecture
to mean that the resource overhead of running a quantum algorithm, while sus-
taining expected behavior in execution time and success probability (of order unity,
∼ O(1)), increases linearly with the problem size. We propose a modular ion-trap-
based architecture and quantify its scalability for three different benchmark circuits
crucial for Shor’s factoring algorithm [Shor 1997]: a quantum carry look-ahead adder
(QCLA)[Draper et al. 2006], the CDKM quantum ripple-carry adder (QRCA) [Cuccaro
et al. 2004], and an approximate quantum Fourier transform (AQFT) [Fowler and Hol-
lenberg 2004]. This architecture features fast and reliable interconnects to ensure ef-
ficient access to computational resources, and enables flexible distribution of compu-
tational resources to various workload-intensive parts of the system depending on the
circuit being executed. By evaluating this architecture for a variety of benchmarks, we
show that it can achieve highly optimized performance by flexible and efficient utiliza-
tion of given resources over a range of interesting quantum circuits.

To quantify the performance of an architecture as a function of available resources,
we develop a performance-simulation tool similar to those reported in Refs. [Svore
et al. 2006], [Whitney et al. 2007],[Balensiefer et al. 2005], and [Whitney et al. 2009]
that (a) maps application circuits on to the quantum hardware, (b) generates and
schedules the sequence of quantum logic gates from the algorithm operating on the
qubits mapped to the hardware, and (c) estimates performance metrics such as total
execution time and failure probability. Unlike the tools reported previously, our tool
features unique capabilities to (1) simulate performance over varying hardware device
parameters, (2) allow dynamic resource allocation in the architecture, (3) provide de-
tailed breakdown of resource and performance variables, and (4) enable visualization
of resource utilization over (5) a range of benchmark applications. By leveraging these
unique attributes we search the architecture space for a suitable QC design while pro-
viding valuable insights into the factors limiting performance in a large-scale QC.

This paper is organized as follows: section 2 describes benchmark quantum cir-
cuits and their characteristics. Section 3 describes the underlying quantum hardware
technology and the modular, reconfigurable architecture used in our simulation. The
toolset and its main features are outlined in section 4. Simulation results along with
detailed discussions are given in section 5, and section 6 describes extensibility of the
tool. Section 7 puts our work in the context of other previous quantum architecture
studies, and section 8 summarizes the main insights gained from our study.

2. QUANTUM CIRCUITS
2.1. Universal Quantum Gates
Quantum circuits consist of a sequence of gates on qubit operands. An n-qubit quantum
gate perform a deterministic unitary transformation on n operand qubits. In the termi-

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Designing a Million-Qubit Quantum Computer Using Resource Performance Simulator A:3

nology of computer architecture, a gate corresponds to an “instruction” and the specific
sequences of gates translate into instruction-level dependencies. Similar to classical
computers, it is known that an arbitrary quantum circuit can be constructed using a
finite set of gates (called universal quantum gates) which is not unique) [Nielsen and
Chuang 2000]. For fault-tolerant quantum computation, one has to encode the qubits
in a QECC, and perform logic gates on the encoded block of logical qubits [Nielsen and
Chuang 2000]. There are two ways of performing gates on a logical qubit: in the first
procedure, the quantum gate on logical qubit(s) is translated into a bit-wise operation
on constituent qubits (referred to as a “transversal” gate). Since an error on one con-
stituent qubit in the logical qubit cannot lead to an error in another constituent qubit
in the same logical qubit, the error remains correctable using the QECC and there-
fore a transversal gate is automatically fault-tolerant. For a good choice of QECC,
most of the gates in the universal quantum gate set are transversal, and therefore
fault-tolerant implementation is straightforward. Unfortunately, for most of the QECC
explored to date (the class of QECC called additive codes), it is impossible to find a
transversal implementation of all the gates in the universal quantum gate set [Zeng
et al. 2011]. A second, general procedure for constructing such gates involves fault-
tolerantly preparing a very special quantum state, called the “magic state”, and then
utilizing quantum teleportation to transfer the operand qubit into the magic state to
complete the gate operation [Zhou et al. 2000]. This operation is generally much more
resource intensive and time consuming, so minimizing such operations is a crucial
optimization process for the fault-tolerant circuit synthesis.

We employ the widely used Steane [[7,1,3]] code [Steane 1996]. It invests seven
qubits to encode one more strongly error-protected qubit. For the universal gate set,
we utilize {X, Z, H, CNOT, Toffoli} for the adder circuits (both QCLA and QRCA), and
{X, Z, H, CNOT, T} for the AQFT circuit. For a single qubit state α|0〉 + β|1〉, X and
Z correspond to the bit-flip and phase-flip operations that take the state to α|1〉+ β|0〉
and α|0〉 − β|1〉, respectively, and span a Pauli group of operators. H is the Hadamard
operator, which converts the computational basis states |0〉 and |1〉 to the equal linear
superposition of two states |±〉 = (|0〉 ± |1〉)/

√
2, and vice versa. CNOT is a two-qubit

gate where the state of the second qubit (called the target qubit) is flipped iff the state
of the first qubit (called the control qubit) is |1〉. Along with the Pauli operators, H and
CNOT span a Clifford group of operators (Clifford gates). In the Steane code, all opera-
tors in the Clifford group can be implemented transversally. However, in order to com-
plete the set of universal quantum gates, a non-Clifford gate must be added. This could
be either the T gate (sometimes called the π/8-gate), a single-qubit gate which shifts
the phase of the |1〉 state by π/4, or the Toffoli gate (sometimes called the Controlled-
Controlled-NOT), a three-qubit gate where the state of the third qubit is flipped iff
the state of the first and second qubits are both |1〉. Using either gate is equivalent,
in the sense that a Toffoli gate can be constructed using several T gates and Clifford
gates [Nielsen and Chuang 2000]. Fault-tolerant implementation of a non-Clifford gate
requires magic state preparation when the Steane code is used. Fig.1 shows the fault-
tolerant implementation of the Toffoli gate, where the Toffoli magic state is prepared
with the help of four ancilla qubits followed by the teleporation of the operand qubits
into the magic state.

2.2. Benchmark Circuits
Shor’s factoring algorithm consists of an arithmetic calculation called modular expo-
nentiation [Van Meter and Itoh 2005; Vedral et al. 1996; Beckman et al. 1996] which
can be constructed from adder circuits, followed by a quantum Fourier transform [Shor
1997]. Arithmetic circuits like adders (QCLA and QRCA) can easily be constructed

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 M. Ahsan et al.

Fig. 1. Fault tolerant circuit for Toffoli gate used in adder benchmarks. |α〉L denotes a logical qubit block
representing the state |α〉.

from X, CNOT and Toffoli gates, while AQFT can be constructed more conveniently
from T gates. We consider a QC architecture where both Toffoli and T gates can be
executed, and optimize the architecture for executing all required quantum circuits
for running Shor’s algorithm.

2.2.1. Quantum adders. A large number of quantum adder circuits must be called to
complete the modular exponentiation that constitutes the bulk of Shor’s algorithm.
We select two candidate adders QRCA and QCLA, representing two vastly different
addition strategies, analogous to classical adders. QRCA is a linear-depth circuit, con-
taining serially connected CNOT and Toffoli gates: an n-bit addition will require about
2n qubits to perform 2n Toffoli and 5n CNOT gates [Cuccaro et al. 2004]. The sequence
of these gates is inherently local, and nearest-neighbor connectivity among the qubits
is sufficient to implement this circuit. On the other hand, QCLA is a logarithmic-
depth [∼ 4 log2 n] circuit connecting 4n qubits utilizing up to n concurrently executable
gates [Draper et al. 2006]. This circuit roughly contains 5n− 3 log2 n CNOT and Toffoli
gates for n-bit addition. The exponential gain in performance (execution time) comes
at the cost of sufficient availability of ancilla qubits and rapid communication channels
among distant qubits to exploit parallelism. The QC hardware model considered here
is unique in providing the global connectivity necessary for implementing QCLA. We
study the resource-performance tradeoff in selecting QCLA vs. QRCA in Section 5.

2.2.2. Approximate quantum Fourier transform. The quantum Fourier transform (QFT)
circuit is often used as the keystone of the order-finding routine in Shor’s algo-
rithm [Nielsen and Chuang 2000]. It contains controlled-rotation gates Rz(π/2k),
where the phase of the target qubit is shifted by π/2k for the |1〉 state if the control
qubit is in the |1〉 state, for 1 ≤ k ≤ n, in a n-qubit Fourier transform. Fig. 2 shows that
the controlled-rotation gates can first be decomposed into CNOTs and single-qubit ro-
tations with twice the angle. These rotation operations are not in the Clifford group
for k > 1, and must be approximated using gates from the universal quantum gate
set [Nielsen and Chuang 2000]. A recent theoretical breakthrough provides an asymp-
totically optimal way of approximating an arbitrary quantum gate with a precision of
ε using only O(log(1/ε)) Clifford group and T gates, and a concrete algorithm for gen-
erating the approximation circuit [Kliuchnikov et al. 2013; Giles and Selinger 2013].

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Designing a Million-Qubit Quantum Computer Using Resource Performance Simulator A:5

Fig. 2. Fault-tolerant circuit for a controlled-rotation gate used in AQFT benchmark circuit. Small angle
rotation gates are approximated by a sequence of T and Clifford gates, and the T gates are performed by
magic state preparation and data teleportation.

It has been shown that a QFT circuit can yield the correct result with high enough
probability even if one eliminates all small-angle rotation gates with k > 8, sufficient
to factor numbers as large as 4,096-bits [Fowler and Hollenberg 2004]. The resulting
truncated QFT is called the approximate QFT (AQFT). The depth of this benchmark
circuit is linear in the size of the problem n, and the total number of controlled-rotation
gates scales as 16n. Using the method outlined in Ref. [Kliuchnikov et al. 2013], we ap-
proximate rotations in our AQFT circuit with a sequence of 375 gates (containing 150
T gates), with a precision of 10−16. The resulting approximation sequence consists of
T (or T †) gates sandwiched between one or two Clifford gates, whose execution time is
negligible compared to the T gate. The execution of the T gate proceeds in two steps:
preparation of the magic state T |+〉 and teleportation of data into the magic state.
Since state preparation takes much longer time than teleportation in our system (78
ms vs 12 ms, see Table III), we can employ multiple QC units to prepare magic states
to simulate pipelined execution of T gates. When multiple ancilla qubits are available
for the magic state preparation, we can reduce the delay in the execution of the ap-
proximation sequence. Using a simple calculation, we can show that the availability
of 8 logical ancilla qubits completely eliminates any delay. When the error correction
procedure is inserted in the approximation sequence, its latency can be leveraged to
eliminate the preparation delay with even fewer ancilla qubits.

3. QUANTUM HARDWARE AND QUANTUM ARCHITECTURE MODELS
Quantum hardware describes the physical devices used to achieve computation using
a specific technology [Ladd et al. 2010] such as trapped ions, atoms, superconductors,
or quantum dots. The efficiency and reliability of QC depend on the characteristics of
the chosen technology, such as execution time and fidelity of physical gate operations.
We describe the physics of the quantum hardware by a set of device parameters (DP).

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 M. Ahsan et al.

In our simulation, the assumed baseline values for these parameters are optimistic,
but can be achieved in the near future through rapid technology advancement. Once
quantum hardware technology is specified, we arrange the qubit resources according
to their specific roles and their interconnection in order to assemble a large-scale QC.
This is captured by the parameters of the quantum architecture. For example, the num-
ber of qubits dedicated to perform fault tolerant quantum operations and the specifi-
cation of communication channels are considered architecture parameters.

3.1. Quantum Hardware Model
We choose to model quantum hardware based on trapped ions for its prominent prop-
erties that have been demonstrated experimentally. First, the qubit can be represented
by two internal states of the atomic ion (e.g., 171Yb+ ion [Olmschenk et al. 2007]), de-
scribed as a two-level spin system, manipulated by focusing adequate laser beams at
the target ion(s). The physical ion qubits can be individually accessible for computa-
tion [Knoernschild et al. 2010; Crain et al. 2014]. These qubits can be reliably initial-
ized to the desired computational state and measured with very high accuracy using
standard techniques. Most importantly, by virtue of the very long coherence time of the
ions, qubits can retain their state (memory) for a period of time unparalleled by any
other quantum technology. The qubit memory error is modeled as an exponential decay
in its fidelity F ∼ exp(−at), where a (=1/Tcoh) is determined by the coherence time of
the qubit, and t is the time between quantum gates over which qubit sits idle (no-op).
The corruption of the qubit state is modeled using a depolarizing channel [Nielsen and
Chuang 2000] (equal probability of bit flip, phase flip and bit-and-phase flip errors). Ar-
bitrary single qubit gates, CNOT, and measurement can be performed with adequate
reliability, making trapped ions a suitable candidate for large scale universal QC.

A single-qubit quantum gate is accomplished by a simple application of laser pulse(s)
on the qubit in its original location. A two-qubit gate, on the other hand, requires that
both ions are brought in proximity before the laser pulse(s) are applied. In our model,
there are two ways to achieve this proximity using two different types of physical re-
sources: the ballistic shuttling channel (BSC) and the entanglement link (EL) [Monroe
et al. 2014]. BSC provides a physical channel through which an ion can be physically
transported from its original location to the target location by carefully controlling the
voltages of the electrodes on the ion trap chip. This chip can be modeled as a 2-D grid of
ion-trap cells as shown in Fig.3. The dimensions of the state of the art ion-trap cell de-
scribed in [Monroe and Kim 2013] fall in the ∼mm size range, and we use Tshutt = 1µs
as the time it takes for an ion to be shuttled through a single cell. In the EL case,
an entangled qubit pair (also known as the Einstein-Podolski-Rosen, or EPR, pair)
is established between designated proxy “entangling ions” (e-ions) that belong to two
independent ion trap chips using a photonic channel. This process is called heralded
entanglement generation [Duan et al. 2004], since the successful EPR pair generation
is announced by the desired output of detectors collecting ion-emitted photons. The
resulting EPR pair is used by the actual operand ions as a resource to perform the
desired gate via quantum teleportation between two ions that cannot be connected by
BSC [Gottesman and Chuang 1999]. It should be noted that the generation time for
the EPR pairs is currently a slow process due to technology limitations. This slowness
can be compensated for by generating several EPR pairs in parallel using dedicated
qubits and hardware. Table I summarizes the DPs used for all the analyses in this
paper.

3.2. Quantum Architecture Model
Our model is similar to the modular universal scalable ion-trap QC (MUSIQC) archi-
tecture [Monroe et al. 2014] shown in Fig.3. It features a hierarchical construction of

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Designing a Million-Qubit Quantum Computer Using Resource Performance Simulator A:7

Table I. Device Parameters (DPs)

Physical Operation Time(µs) Failure Probability
Single-qubit 1 10−7

Two-qubit (CNOT) 10 10−7

Three-qubit (Toffoli) 100 10−7

Measurement 100 10−7

EPR pair Generation 5000 10−4

Fig. 3. Overview of the reconfigurable quantum computer architecture analyzed in our performance simu-
lation tool.

larger blocks of qubits (called segments) composed of smaller units (called Tiles), which
are connected by an optical switch network. We use the Steane [[7,1,3]] code [Steane
1996] to encode one logical qubit using 7 physical qubits. Additional (ancilla) qubits
are supplied to perform error correction and fault tolerant operations on the logical
qubit. We first construct the first layer (L1) logical qubit block containing 22 physical
qubits (7 data and 15 ancilla qubits) using Steane encoding. As the size of computation
grows, multiple layers of encoding are needed to minimize the impact of increasing
noise: with each new layer, the qubit and gate count increase by about a factor of
7. At least two layers of encoding are essential for reliable execution of the sizable
benchmark circuits analyzed in our simulations. Therefore, we cluster 7 L1 blocks to
construct the second layer (L2) logical qubit block containing dedicated qubits to si-
multaneously carry out error correction operations at L1 level after every L1 gate. We
find that the error correction operation at L2 level occurs much less frequently, and a
dedicated error correcting ancilla resource at L2 is not necessary for each L2 logical
qubit. Therefore, we allocate fewer ancilla qubits at L2 level for error correction, and
rely on resource sharing to accomplish fault-tolerance at L2 level.

At L2 level, we construct four different types of logical qubit blocks using L1 logical
blocks, called L2 Tiles, that serve different functions in the computation [Metodi et al.
2005]. Each Tile consists of memory cells that provide storage and manipulation of
qubits for quantum gates, and BSCs that allow rapid transportation of ions across the
memory cells to support the qubit interaction necessary for multi-qubit gates. Tiles are
specified by their tasks, such as data storage (Data Tile), state preparation for non-

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 M. Ahsan et al.

Clifford gates (Ancilla Tile), error correction (EC Tile), and communication between
segments (Communication Tile). At the highest layer of hierarchy, various L2 Tiles
are assembled to construct two types of segments: storage segments (SS) and computa-
tional segments (CS). A segment is the largest unit that is internally connected using
BSCs, and the connections between segments are carried out using optical interfaces.
Each segment must contain at least one Communication Tile, one EC Tile, and several
Data Tiles. The SS store qubits when they undergo no-ops. On the other hand, CS con-
tains qubits necessary to perform the complex non-Clifford gates, which requires the
ability to prepare the magic states and support the teleportation of data. The magic
state is prepared using Ancilla Tiles, which are specific to CS only. The transportation
of data between segments is achieved by teleporting data through the EPR link estab-
lished by the Communication Tiles of the segments. A network of optical switches [Kim
et al. 2003] enables EPR pair generation between any pair of segments in the system.
To generate an L2 logical EPR pair, an L2 CNOT consisting of 49 physical CNOT gates
is first enacted using 49 physical EPR pairs [J. Eisert and Plenio 2000] and then error
correction is applied to improve its fidelity [Jiang et al. 2009]. The detailed composi-
tion of different L2 Tile types is provided in Table II. An L2 Tile can contain up to 600
cells arranged in a 2-D grid, and the time to shuttle logical qubits through the Tile is
defined to be 60µs.

This architecture scales by adding more qubits to the system in the form of addi-
tional segments, which demands a larger optical switch network, at nominal increase
in the latency overhead of EPR pair generation. The optical switches can be connected
in a tree-like hierarchy such that the height h of the tree scales only logarithmically
with the number of segments. We restrict the size of the optical switches to 1,000
ports [Kim et al. 2003], which can connect up to 20 segments at the lowest level of the
optical network tree, using 49 optical ports per L2 Communication Tile. This unique
feature enables global connectivity for the entire QC, with the cross-segment commu-
nication time almost independent of distance between segments. The communication
time scales with the height h of switch network as 2h−1. We found that h ≤ 3 is suffi-
cient to connect the maximum number of segments arising in our sizable benchmark
circuits, and the corresponding maximum communication time is 5ms×2h−1 = 20ms.

This globally-connected QC architecture with fast communication channels ensures
rapid access to CS where computational resources for non-Clifford groups are avail-
able. This allows us to designate a finite number of CS in the overall QC to be shared
across the computation. Furthermore, the physical construction of the Data and An-
cilla Tiles are nearly identical (one Ancilla Tile can serve as two Data Tiles, and vice
versa), so the designation between Data and Ancilla Tiles can be dynamically adjusted
during the course of the computation. The total number of segments and the allo-
cation of Data, Ancilla, EC and Communication Tiles per SS and CS are the archi-
tectural parameters of our QC design, denoted by total number of qubits (NTQ) and
segments (NSeg), number of computational segments (NCS) (NCS ≤ NSeg), number
of EC Tiles (NEC) and Communication Tiles (NComm) per segment, and the number
of Data (NData) and Ancilla (NAnc) Tiles per CS and SS. Throughout our simulation
analysis we assume NEC = 1 since L2 error-correction is applied sparsely to Data
Tiles, and a single EC Tile can serve several L2 logical qubits. Hence, a concise de-
scription of the architecture contains (1) NCS and (2) configuration of CS specified by
three numbers (NData, NAnc, NComm). For SS, we replace NAnc with 2×NData. Our
analysis framework will involve changing architectural parameters and studying their
impact on resource-performance trade-offs. The performance metrics consist of execu-
tion time Texec and failure probability Pfail = 1−Psucc of the circuit, where Psucc is the
probability that circuit execution yields a correct result.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Designing a Million-Qubit Quantum Computer Using Resource Performance Simulator A:9

Fig. 4. An example demonstration of cross-layer resource optimization in L2 Toffoli magic state preparation
circuit. Type-1 L1 Tiles store magic state while Type-2 L1 Tiles which initially perform transversal L1 Toffoli
gates can be reallocated for L2 error correction.

3.3. Dynamic Resource Allocation and Cross-layer Optimization
Our system architecture provides several unique features not considered before, that
provide a crucial advantage in the resource-performance optimization of the QC de-
sign. First, the L2 logical blocks are not identical instantiations of L1 logical blocks:
we utilize several L1 logical blocks to construct L2 Tiles with different functionalities.
Figure 4 shows that L2 Toffoli magic state preparation in the L2 Ancilla Tiles con-
taining two types of L1 Ancilla Tiles. A Type-1 Ancilla will store a magic state while
a Type-2 Anilla assumes multiple roles across layers of concatenation. When grouped
vertically (Fig.4(a)), Type-2 Ancilla perform transversal L1 Toffoli gates. The horizon-
tal grouping of these Tiles (Fig.4(b)) performs error correction for the L2 magic state.
This “cross-layer optimization” allows efficient utilization of the resources for those
tasks (such as error correction at L2) where common resources can be shared. Second,
our system allows dynamic re-allocation of computational resources during the com-
putation (Data vs. Ancilla Tiles) to adapt the architecture to the computational task at
hand to improve the performance, analogous to reconfigurable computing using field-
programmable gate arrays (FPGAs) in modern classical computing. Last, utilization of
fully distributed resources (such as CS) is enabled by the global connectivity that is a
unique feature of our architecture.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 M. Ahsan et al.

Fig. 5. Main components of our toolbox

Table II. Composition of L2 Tile

Tile Type L1 Tiles Physical qubits
Data 7 154

Ancilla 15 330
Error Correction 15 330
Communication 22(= 7 + 15) 484 + 49

4. TOOL DESCRIPTION
4.1. Design Flow and Tool Components
The toolbox flow shown in Fig.5 has two main components: Tile Designer and Per-
formance Analyzer (TDPA) and Architecture Designer and Performance Analyzer
(ADPA). Both components share common critical tasks, namely mapping, scheduling
and error analysis, but the application of these tasks differs according to their objec-
tives and the constraints.

4.1.1. TDPA. TDPA works in the back end of the tool and simulates the fault-tolerant
construction of the logical qubit operations using specified DPs. It builds Tiles using
Tile Builder by allocating sufficient qubits that can perform the operations specified
in Steane Fault-Tolerant Circuit Generator, and maps qubits in the circuit to the
physical qubits in the Tile using Low Level Mapper. Then, Low Level Scheduler
generates the sequence of quantum gate operations to be executed in the circuit, in-
cluding transversal gates, magic state preparation for non-Clifford gates, error correc-
tion and EPR pair generation. Each logical operation is broken down into constituent
physical operations, whose performance is simulated on the Tile by adding up the exe-
cution time of each gate subject to circuit dependencies and resource constraints. Low
Level Error Analyzer computes the failure probability of the specified fault-tolerant
quantum gates based on the scheduled circuit, by counting the number of ways in
which physical errors can propagate to cause a logical error in the qubit [Aliferis et al.
2005; Ahsan et al. 2013]. The Tile parametrized by DP and the computed performance

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Designing a Million-Qubit Quantum Computer Using Resource Performance Simulator A:11

metrics is stored in Tile Database. Table III shows the performance of the unified L2
Tile (which can act as Data, EC, Ancilla and Communication Tile) computed by the
TDPA for baseline DPs given in Table I.

4.1.2. ADPA. ADPA is the front end of the tool that interfaces with the user. It takes
architecture parameters specified by the user (e.g., NCS, NEC and NComm) as in-
puts and (1) builds and connects segments using Tiles supplied by TDPA to implement
benchmark application on hardware configuration, and (2) evaluates performance of
the benchmark for given architecture parameters. First, Quantum Circuit Gener-
ator generates the benchmark circuits from the given algorithms (QCLA, QRCA and
AQFT). Then, High Level Mapper maps logical qubits to Tiles in the segments, max-
imizing the locality by analyzing their connectivity patterns in the circuit, assigning
frequently interacting qubits to the Tiles in the same segment. This is achieved by
solving an optimal linear arrangement problem using an efficient graph-theoretic al-
gorithm [Juvan and Mohar 1992] to generate the initial map of the Data Tiles in the
segments. Using this map, High Level Scheduler generates the sequence of gates for
the circuit execution by solving the standard resource-constraint scheduling problem
in which resources and constraints are given by architecture parameters. Scheduler
minimizes the execution time by reducing the circuit critical path through maximum
utilization of available resources (Ancilla and Communication Tiles) in the segments.
The non-Clifford gates require operands to be available in the same CS before being
scheduled. Therefore the operand located in remote Data Tiles needs to be teleported
into the local Data Tile of the CS, while Ancilla Tiles prepare the magic state for ex-
ecution. NCS determines how many non-Clifford gates can be scheduled in parallel,
while NComm determines how quickly Tiles can be teleported across the segments.
Therefore the delays in gate scheduling depend mainly on architecture parameters.
The critical path of the circuit consists of these delays and the gate execution time.
The complete list of latencies arising due to insufficient resources and architecture
configuration is:

— Ancilla Delay (DANC): Delay due to the magic state preparation (fewer NCS or fewer
Ancilla Tiles per segment)

— Shuttling Delay (DSHUT): Delay due to the transportation of operand qubits of the
gate, through BSC inside the segment

— Tel Delay (DTEL): Delay due to the logical EPR pair generation for communication
(Fewer NComm)

— Cross-Seg-Swap Delay (DSWP): Delay due to the cross-segment swapping (fewer
NComm or large number of smaller segments)

The Scheduler also minimizes Pfail by scheduling error correction on Data Tiles
at regular intervals when they sit idle (no-op). Once a complete schedule of logical
operations is obtained, High Level Error Analyzer computes the overall Pfail. Since
we cannot correct for logical failure of the operation, Error Analyzer simply computes∏i=N

i=1 (1 − PLi), where PLi is the failure probability of the i-th logical gate and N is
the total number of logical operations in the circuit. Error Analyzer also tracks the
operational source of each PLi so that 1 − Psucc can be broken down into the following
important noise components:

— Shuttling Error PSHUT : Errors due to the qubit shuttling through noisy BSC
— Teleportation Noise PTEL: Errors due to the infidelity of an EPR pair for communica-

tion
— Memory Noise PMEM : Errors due to the fidelity degradation of qubit during no-op
— Gate Noise PGATE : Errors due to the noisy quantum gates and measurements

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 M. Ahsan et al.

Table III. L2 Tile Performance Numbers. The L1 Error Correction takes
687µs and fails with probability 1.66× 10−10.

Logical Operation Texec(µs) 1− Psucc

Pauli (X, Z) 1 1.15× 10−18

Hadamard 4 1.15× 10−18

CNOT 10 4.74× 10−18

Transversal (Bitwise) Toffoli 4, 210 1.1× 10−17

7-qubit Cat-State prep. 6, 500 3.75× 10−18

Measurement 11, 900 6.14× 10−17

L2 Error Correction 48, 900 4.58× 10−16

State prep. (|0〉,|+〉) 34, 500 1.6× 10−16

State prep. (T |+) 78, 100 4.23× 10−16

EPR pair generation Tgen + 50, 800 1.08× 10−11

Fig. 6. An example shows tracking of latency overheads comprising critical path of the circuit.

4.2. Splitting Performance Metrics
Our tool can output the constituents of Texec by keeping track of the different types of
latency overhead comprising the critical path of the quantum circuit execution. Our
iterative scheduler selects a gate for execution during each iteration and updates the
critical path. When a gate is selected for execution, the operand qubits should be avail-
able for computation otherwise it will be delayed. If we let Tstart be the time at which
the gate was executable but operands were available at T ′start where T ′start ≥ Tstart,
then the time at which the gate execution is complete is given by Tfinish = T ′start+Texec.
The gate execution selected in scheduling iteration i will update the critical path if
Tfinish > T i−1

TotalExec where T i−1
TotalExec is the total execution time (the length of critical

path) computed in iteration i− 1.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Designing a Million-Qubit Quantum Computer Using Resource Performance Simulator A:13

Fig. 7. The running time of ADPA (excluding Visualizer) as a function of benchmark application size. With
full Visualization, the running times increases no more than seven times.

When the gate lies on the critical path, the Scheduler computes ∆T = Tfinish −
T i−1
TotalExec and ∆D = T ′start−Tstart which can be broken down as ∆D = DANC+DSHUT +
DTEL +DSWP . To define the components of the critical path in iteration i− 1, we split
T i−1
TotalExec into its components as: T i−1

TotalExec = T i−1
ANC +T i−1

SHUT +T i−1
TEL +T i−1

SWP +T i−1
GATE .

For iteration i, these components are updated as follows:

— Ancilla Preparation Overhead:
T i
ANC = T i−1

ANC + DANC

∆D+Texec
×∆T

— L2 Shuttling overhead:
T i
SHUT = T i−1

SHUT + DSHUT

∆D+Texec
×∆T

— Teleportation Overhead:
T i
TEL = T i−1

TEL + DTEL

∆D+Texec
×∆T

— Segment Swap Overhead:
T i
SWP = T i−1

SWP + DSWP

∆D+Texec
×∆T

— Gate overhead:
T i
GATE = T i−1

GATE + Texec

∆D+Texec
×∆T

In the case of the critical path, we also update the total execution time T i
TotalExec =

Tfinish. An example breakdown of execution time is shown in Fig. 6, where magic state
preparation for Toffoli gates and cross-segment swapping delay the execution of gates
in turn and comprise the bulk of the critical path. Our tool can also decompose the
failure probability Pfail into its components since Error Analyzer tracks noise sources
from the schedule. For any operation type op, we compute P op

fail = 1−
∏i=nop

i=1 (1− P op
Li),

where op can be shuttling, memory, teleportation or gate, and nop and P op
Li are the total

operation count and failure probability for op, respectively.

4.3. Tool Validation and Performance
Individual components of the tool can easily be verified for correctness by running
these for known circuits and comparing their output with anticipated results. Overall
validation can be performed by using visualization and the breakdown of performance
metrics for different types of benchmarks. Tool efficiency mainly arises from taking
advantage of the repetitive nature of fault-tolerant procedures and circuit breakdown
of universal quantum gates. Performance of low-level circuit blocks is pre-computed

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 M. Ahsan et al.

Fig. 8. QCLA execution time (a) scaling under no constraints on physical resources, Texec and total physical
qubits (NTQ) consumed are plotted as a function of benchmark size, NCS = NSeg.(b) variation with NCS for
different NComm, showing trade-offs between resources and Texec

and stored in the database, and used for simulating the behavior of high-level circuits.
For instance TDPA can be run offline to generate parametrized Tiles, which are used
to efficiently run components of ADPA such as High Level Scheduler, Error Analyzer
and Visualizer. Similarly, the initial mapping of L2 qubits on these Tiles is generated
from a computationally intensive optimization algorithm [Juvan and Mohar 1992],
but once generated, can be efficiently processed by the High Level Scheduler to gen-
erate subsequent gate schedules. Thus, we can run High Level Mapper offline as well.
Consequently, the running time of the tool is decided by that of High level Scheduler
and Error Analyzer, which mainly depends on architecture resources and benchmark
size. The results discussed in Section 5 show that the performance improvement satu-
rates once resource investment exceeds a certain value, and the maximum size of the
overall system we have to simulate is mainly dictated by the size of the application
circuit.

Figure 7 shows the running time of the tool as function of circuit size. The data
is collected by running the tool on a computer system containing Intel(R)Core(TM) i3
2.4GHz processor and 2GB RAM. To incorporate the dependency of tool running time
on the available architecture resources, we choose the configuration containing maxi-
mum resources in order to obtain typical worst-case running time of the tool. In this
configuration, we allocate maximum Ancilla and Communication Tiles per Data Tile
and allow all Segments to act as Computational Segments. Under these conditions,
Fig.7 shows that the performance-simulation of 2,048-bit circuit can be completed in
less than 1.5 minutes. Thanks to the efficiency in the performance simulation, our tool
can explore a large QC design space in a reasonable amount of time.

5. SIMULATION RESULTS
We first analyze the relationship between resources (qubits) and performance as
a function of benchmark size for scalability. We consider the system architecture
resource-performance (RP) scalable if the increase in resources necessary to achieve the
expected behavior of the performance (execution time) grows linearly with the size of
the benchmark, while maintaining Psucc ∼ O(1). In the absence of hardware resource
constraints, the expected execution time for the QRCA and AQFT grows linearly, while
that for QCLA grows logarithmically, as the problem size grows. The execution time

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Designing a Million-Qubit Quantum Computer Using Resource Performance Simulator A:15

Fig. 9. QRCA execution time (a) scaling under no constraints on physical resources, Texec and total physical
qubits (NTQ) consumed are plotted as a function of benchmark size, NCS = NSeg.(b) variation with NCS for
different NComm, showing trade-offs between resources and Texec

Fig. 10. AQFT execution time (a) scaling under no constraints on physical resources, Texec and total physi-
cal qubits (NTQ) consumed are plotted as a function of benchmark size, NCS = NSeg.(b) variation with NCS
for different NComm, showing trade-offs between resources and Texec

could grow much more quickly in the presence of resource constraints, in which case
the system is not considered RP scalable.

In the first step we present a set of simulations to quantify the RP scalability of the
proposed MUSIQC architecture for benchmark circuits and analyze the constituents
of performance metrics. In the next step, we study the impact of limited resources
and architecture parameters on the performance of fixed size benchmarks. This will
provide guidelines to find an optimized design under limited resources. In the last set,
optimum designs are obtained under resource constraints, for effectively executing the
benchmark circuits.

5.1. Resource-Performance Scalability
Fig. 8(a), 9(a) and 10(a) show Texec and the total number of physical qubits (NTQ)
plotted against benchmark size for QCLA, QRCA and AQFT respectively, and corre-

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 M. Ahsan et al.

Table IV. Failure Probability Pfail for corresponding data points of in
Fig. 8(a),9(a),10(a)

Table V. The breakdown of Performance metrics: Texec of Fig. 8(a),9(a),10(a) and Pfail of
Table IV for 1,024-bit benchmark. NCS = NSeg

sponding Pfail values are shown in Table IV. We consider two architecture configura-
tions (NData, NAnc, NComm)=(3,4,1) and (12,4,3) for the adders, and configurations
(1,4,1) and (1,8,1) for AQFT. When benchmark size increases by factor of x, we expect
Pfail to increase by at least the same amount (total logical gate operations increase x-
fold) while execution time scales as the depth of the circuit. Indeed Table IV confirms
this trend in Pfail for all benchmarks. On the other hand, as problem size doubles,
both Texec for QRCA and AQFT increase 2 fold [linear curve for Texec in Fig. 9(a) and
10(a)]. For QCLA, Texec increases roughly by a constant amount [logarithmic curve in
Fig. 8(a)] as expected. Since this performance is achieved for the same increase in total
number of qubits as that of the problem size, our architecture shows RP scalability.

By demonstrating RP scalability for two different architecture configurations with
NCS = NSeg, we have presented varying performance levels. The impact of these con-
figurations can be understood by analyzing the breakdown of performance metrics
in Table V. The significant contribution of the overhead TANC for adder configuration
(12,4,3) and AQFT configuration (1,4,1) shows that magic state preparation is the dom-
inant component of Texec due to insufficient Ancilla Tiles in CS. This overhead can be
substantially reduced either by increasing NAnc (configuration (1,8,1) for AQFT) or
by increasing the ratio of NData to NAnc (configuration (3,4,1) for adders). However,
the configuration (3,4,1) exposes EPR pair generation overhead captured by TTEL and
TSWP . This is due to the large number of cross-segment CNOT gates and qubit swap-
ping operations required to bring all Toffoli operands to the same segment. Hence
for adders, frequent cross-segment communication explains the higher contribution of
teleportation error (PTEL) in the failure probability. For AQFT, configuration (1,8,1)
highlights shuttling overhead TSHUT as T gates comprise bulk of the operations. The

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Designing a Million-Qubit Quantum Computer Using Resource Performance Simulator A:17

Fig. 11. (LEFT) Sample QCLA circuit, and (RIGHT) visual representation of latency overhead for Com-
putational Segments of 1024-bit QCLA architecture with (a) configuration (3,4,4), NCS = NSeg = 1362, (b)
configuration (3,4,1), NCS = NSeg = 1362 and (c) configuration (3,4,1), NCS = 341.

scheduling of T gates in the long approximation sequence leads to a large number of
interactions between Data and Ancilla Tiles through BSC in the segment. This inten-
sive localized communication makes (PSHUT) the only noticeable component of Pfail.
In conclusion, we have shown RP scalability of the architecture when performance is
bottlenecked by different hardware constraints for various benchmarks. This shows
that the architecture can utilize additional resources efficiently to achieve adequate
performance when running quantum circuits of larger sizes.

5.2. Resource-Performance Trade-offs
Now that we have quantified RP scalability, we examine the impact of reduced re-
sources on the performance by constraining architecture parameters. We fix the size
of the benchmarks to 1,024 bits and vary NComm, NCS and the configuration to ob-
serve changes in Texec. Fig. 10(b) shows that for AQFT, (1) Texec does not change with
NComm since it is not restricted by cross-segment communication resources, and (2)
Texec initially decreases sharply as NCS increases, but flattens when NCS reaches ∼
16, mainly due to insufficient parallelism in the circuit. The QRCA curves in Fig.9(b)
remain unchanged as NCS increases until NCS approaches NSeg where Texec shows
noticeable decline. However, the overall decrease remains within a factor of only about
3, due to serial nature of the circuit dependencies. By comparing curves for different

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18 M. Ahsan et al.

configurations [(12,4,1) vs. (3,4,1) for QRCA and (1,8,x) vs (4,8,x) for AQFT], we find
that clustering more Data Tiles in the CS generally reduces Texec due to fewer delays
in cross-segment operand swapping.

Fig. 8(b) shows that Texec of QCLA decreases exponentially with NCS. In contrast
to QRCA, the large number of concurrently executable Toffoli gates in QCLA de-
mands much higher NCS. Furthermore, Texec also decreases with higher NComm as
the large number of cross-segment teleportations consume more communication re-
sources. Fig. 11(a)-(c) provide pictorial description of these trends generated through
our visualization tool. The visualization highlights different types of latencies aris-
ing from the resource constraints in scheduling within each CS. The visualization tool
draws a line, in execution time (horizontal axis) – qubit location (vertical axis) plane,
between each point where a logical qubit in the circuit requires additional resources to
proceed to the next step (such as a magic state for non-Clifford group gates prepared
in an Ancilla Tile, or EPR pairs for teleportation in Communication Tiles), and a point
where the required resource becomes available. As a consequence, the horizontal lines
represent delay in magic state preparation, while non-horizontal lines indicate delays
in cross-segment teleportation. The corresponding latencies can be derived by project-
ing these lines on the horizontal axis. When sufficient NCS and NComm resources are
provided as in Fig. 11(a), there is little delay and the circuit execution is fast. However,
when NComm is reduced from 4 to 1 as in Figure 11(b) teleportation latency caused a
4.5-fold increase in Texec. The same amount of increase occurs in Fig.11(c) when NCS
is reduced from 1,362 to 341. Long horizontal lines indicate delays due to fewer Ancilla
Tiles available for Toffoli magic state preparation, which increases the overall Texec by
another factor of about 6.

By comparing Figure 8,9,10, it is easy to conclude that QCLA is the most resource
hungry benchmark while AQFT is the least. We also note that Pfail values do not
tend to improve substantially when we provide more architecture resources. It can be
shown that a substantial decrease in Pfail can be achieved by improving the relevant
device parameters (DPs) that contributes to the dominant noise sources [Ahsan and
Kim 2015]. These sources can correctly be identified once we have invested sufficient
resources for scheduling error-correction and chosen optimized architecture configu-
ration that minimizes Texec. In the following subsection, we concentrate on Texec only
and return to optimizing Pfail in the last subsection.

5.3. Performance Scaling under Limited Resources
The increase in Texec due to constrained resources can be compensated to some extent
by designing an optimized architecture that allocates more resources towards the root
cause that limits the performance. The choice of optimized architecture configuration
varies across benchmarks, since both performance bottlenecks and resource utiliza-
tion depend strongly on the structure of the application circuit. By plotting optimized
Texec against benchmark size using a fixed resource budget, we can determine (1) the
largest circuit size which can be scheduled and executed, (2) the trend for the opti-
mized performance as a function of problem size, and (3) the choice of configuration
which generally obtains the optimized performance for the specified benchmark cir-
cuit. To adequately obtain these insights, we consider an example where we restrict
our total qubit resource (NTQ) to 1.5 million physical qubits. We also restrict the num-
ber of physical qubits contained in the segment; small segment (SSeg) will contain up
to 5,000 physical qubits, while large segment (LSeg) will contain up to 10,000 physical
qubits. For each benchmark we obtain two plots, one for each segment size.

Figure 12 shows Texec of running the benchmark circuits on this system, as a func-
tion of problem size. The Texec for each data point was minimized by tool-assisted
search through all feasible combinations of architecture configurations and NCS pa-

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Designing a Million-Qubit Quantum Computer Using Resource Performance Simulator A:19

Fig. 12. Texec for optimized architectures plotted against benchmark size for different segment sizes. The
resource budget is 1.5 million physical qubits. Optimized architecture configurations are shown in Table VI.

rameters. These optimized architecture designs are shown in Table VI. It is interesting
to compare Ancilla and Communication Tiles invested in the optimized designs. For
example, the configurations (19,12,6) and (8,8,2) for QRCA contains a higher Ancilla-
to-Communication Tiles ratio, as compared to (30,8,5) and (5,4,5) for QCLA. This in-
dicates that in contrast to the QRCA case, both Ancilla and Communication Tiles are
equally vital for the QCLA performance. The AQFT architecture (1,8,1) with sufficient
NCS is a natural choice, since the only relevant resource for this circuit is the large
number of Ancilla Tiles to schedule the long sequence of T gates necessary to approxi-
mate the small-angle rotations.

We observe that regardless of the segment size, Texec of the least resource demanding
benchmark of the three, namely AQFT, scales perfectly with problem size at least up to
4,096 bits. This is due to the fact that the optimized configuration for AQFT can easily
be met within the qubit resource budget. However, in the case of adders, segment size
is an important parameter that impacts the performance. Larger segments open up
a greater search space for optimizing design selection for resource-intensive circuits.
For both QCLA and QRCA, Texec scales better for larger segments. For smaller seg-
ments, QCLA performance shows significant degradation as the problem size begins
to increase. The logarithmic depth of the most resource-intensive benchmark (QCLA)
is restricted to 256-bit and 1024-bit for SSeg and LSeg, respectively. After that, Texec
shows a sudden rise with problem size and even surpasses the corresponding QRCA
performance, as lack of resources leads to substantial delays in executing the parallel
gate operations that enable the logarithmic-depth adder. The largest adder benchmark
that can be scheduled on this hardware is the 2,048-bit adder, where the performance
is substantially slower and QRCA outperforms QCLA by factor of 4.

5.4. Design Optimization by Tuning Device Parameters
5.4.1. Reducing the execution time. The largest integer factorized using a classical com-

puters to date is 768 bits, consuming thirty months on a cluster of several hundred
processors for the factorization [Kleinjung et al. 2010]. Kleinjung et al. estimated that
factorizing a 1,024-bit number is 1000 times harder than a 768-bit number and larger

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 M. Ahsan et al.

Table VI. Optimized Architecture Configurations for Fig.12

Fig. 13. The breakdown of and reduction in the failure probability of 2,048-bit QCLA for the configuration
[30,8,5], NCS = 273 with Tshutt = 1µs and the baseline physical measurement and multi-qubit gate times
reduced by 90%. The original failure probability shown in (a) is reduced from 2.77× 10−7 to 2.37× 10−9 in
(b) only by decreasing the infidelity of the EPR pair for cross-Segment communication.

integers are unlikely to be factored in the near future. Based on these reasons, we
choose performance criterion so that a QC is considered practical if integers larger
than 768 bits can be factored in less than five months.

The total execution time of Shor’s algorithm is heavily dominated by the modular
exponentiation circuit constructed using adders. Efficient implementation of modular
exponentiation for 512-, 1,024- and 2,048-bit integers require 1,4 and 16 million calls to
an adder circuit respectively [Van Meter and Itoh 2005]. Given the size limit of our QC,
the adders are assumed to be executed sequentially since parallel implementation of
adders will require additional qubit resources. The upper bound for the execution time
of an adder circuit to complete the modular exponentiation in five months is shown as
dotted line in Fig.12. If the execution time of an adder falls below this line, an integer
of this size can be factored in less than five months.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Designing a Million-Qubit Quantum Computer Using Resource Performance Simulator A:21

Figure 12 shows that a 1,024-bit number can be factored in less than five months
with a 1.5-million-qubit QC, as the Texec of the QCLA lies below the black dotted line.
However, the Texec of 2,048-bit QRCA and QCLA (58.5s and 270s respectively) are
both significantly higher than the required execution time of 0.8s. We first attempt
to reduce Texec by increasing our resource budget. With twice as many qubits, the
optimized architecture configuration for QCLA changes from (48,4,2), NCS = 25 to
(30,8,5), NCS = 273 and shows nearly 100x decrease in Texec (from 270s to 2.76s).
This remarkable reduction arises as the additional delays in QCLA execution time
due to limited parallel operation is eliminated, and logarithmic depth performance
is restored. The QRCA shows only a nominal reduction from 58.5s to 50.1s, as the
resource limitation is not the main cause of slow execution time. The logarithmic depth
QCLA is the only choice that can meet the threshold execution time criterion, if Texec
can be further reduced by factor of 4. Unfortunately, we find that any further increase
in resources (and new architecture configuration) fails to gain additional reduction in
Texec.

The failure to achieve performance improvement through additional resources high-
lights the role of device parameters (DPs) in the design space [Ahsan and Kim 2015].
The set of DPs which affect the speed of quantum circuit include the latency of phys-
ical operations. We find that when physical gate (and Measurement) times and qubit
shuttling latency are reduced 10x, the execution time declines to 0.68s < 0.8s, meeting
the required adder execution time. The total execution time for 2,048-bit integer fac-
torization in this case can be approximated as the sum of time spent in 16 million calls
to the adder (0.68s × 16 × 106 ≈ 128 days) and the Texec of a single run of the 4,096-
bit AQFT (less than a day). Therefore the proposed QC design can factor a 2,048-bit
number in less than five months.

5.4.2. Reducing the failure probability. In order to ensure that the entire Shor’s algorithm
is reliably executed, we require the sum of the failure probability of a 2,048-bit modular
exponentiation circuit and a 4,096-bit AQFT to be sufficiently low. Table IV shows
already adequate Pfail in range ∼ O(10−4) − O(10−3) for AQFT when baseline value
of 1µs was assigned to the qubit shuttling latency (Tshutt). As Tshutt reduces to 0.1µs
in our current design to lower the execution time of the adder, Pfail of 4,096-bit AQFT
falls well below 10−4. Therefore, the goal of reducing the failure probability of the
full Shor’s algorithm translates into curtailing the failure probability of the modular
exponentiation circuit. This in turn requires the Pfail of each adder call to be less than
a certain threshold value so that overall failure probability is reduced far enough to
meet the design criterion. The 2,048-bit integer factorization consumes 16 million calls
to the adder and therefore we require Pfail << 6.67 × 10−8 for each adder execution.
The Pfail for the design optimized for Texec [(30,8,5), NCS = 273] is 2.77× 10−7.

In order to lower the failure probability, we can either add one more layer of encoding
or reduce the noise level in the physical device components. Adding a layer of encoding
will require at least 7x increase in qubit resources which enormously expands the scale
of integration. In addition, the Texec is also significantly inflated (Table III shows that
L2 error correction takes 70x more time than L1 error correction). Therefore, increas-
ing the number of layers of encoding achieves a reduction in Pfail at the expense of far
greater Texec and resources. On the other hand, reducing the noise level in physical
device components can decrease Pfail without compromising Texec. We exploit the tool
supplied breakdown of Pfail based on the fidelity of component physical operations to
systematically improve the success probability of the factorizing task.

Figure 13 shows the breakdown of failure probability for 2,048-bit QCLA, where over
99% of the failure originates from Teleportation Noise. The device parameter which
directly affects the Teleportation Noise is the infidelity of EPR pairs for cross-Segment

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22 M. Ahsan et al.

communication. By reducing the infidelity from 10−4 to 10−5, we gain more than a 100x
reduction in the failure probability as shown in Fig.13(b). A further decrease in Pfail

can be obtained by tuning DPs affecting the Gate and Memory Noise.
In conclusion, we showed that we can lower the failure probability of 2,048-bit QCLA

circuit to 2.37 × 10−9 (<< 6.67 × 10−8) by tuning the DPs. This gives an overall fail-
ure probability of modular exponentiation of about 3.8%. The Pfail of the 4,096-bit
AQFT is negligible compared to this value and the overall failure probability does not
exceed 4%. Hence we have shown that the optimized adder architecture with the ap-
propriately tuned DPs can be used to construct reliable QC to execute 2,048-bit Shor’s
algorithm.

6. TOOL ENHANCEMENTS AND EXTENSIONS
A .

7. COMPARISON WITH THE RELATED ARCHITECTURE WORK
A generation of quantum architectures for large monolithic ion traps had been ana-
lyzed using area as a metric for resource utilization [Metodi et al. 2005; Thaker et al.
2006; Whitney et al. 2009]. Unfortunately, the sizable trap chip envisioned in these
studies is difficult to fabricate due to limitations of fabrication technology [Guise et al.
2015]. These constraints force us to adopt a modular quantum architecture and a re-
source metric, both of which are largely decoupled from the trap size. In this paper we
analyzed a multi-core architecture (MUSIQC), which invests in communication qubits
to generate EPR pairs in order to connect variable size ion traps (Segments). We used
qubits per trap (qubits/Segment) and total qubits in the computer as the resource met-
rics in our simulations. We find that the MUSIQC architecture directly translates scal-
ability cost into the qubits required for computation and communication regardless of
physical size of the trap. By analyzing this modular architecture, we present a practical
framework for designing and evaluating future generation of quantum architectures.

8. CONCLUSION
We presented a complete performance simulation toolset capable of designing a re-
source efficient, scalable QC. Our tool is capable of analyzing the performance metrics
of a flexible, reconfigurable computer model, and deepens our insights on the quantum
architecture design by providing a comprehensive breakdown of performance metrics
and visualization of resource utilization. Using this tool, we were able to quantify, for
the first time, the resource-performance scalability of a proposed architecture, featur-
ing unique properties such as (1) cross-layer optimization, where qubit resources pro-
viding L2-level functions are shared throughout the computer, (2) resource-constrained
hardware performance, where optimized architectural design for resource allocation is
considered as a function of the problem size, and (3) complete visualization of the re-
source utilization that provides a means to validate the optimality of the performance,
(4) over a hardware architecture that provides global connectivity among all the qubits
in the system.

Due to the macro-modeling approach used in our tool, we achieve highly efficient
runtime for the performance simulation, which allows us to carry out comprehensive
search for an optimized system design under given resource constraints, over a range
of architecture configurations and benchmark circuits. Our benchmarks included cru-
cial building blocks of Shor’s algorithm, including the approximate quantum Fourier
transform and two types of quantum adders. We found that the optimized designs vary
across the benchmark applications depending on the types of gates used, the depth and
parallelism of circuit structure, and resource budget. By comparing their performance

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Designing a Million-Qubit Quantum Computer Using Resource Performance Simulator A:23

across these benchmark circuits, we present a concrete quantum computer design ca-
pable of executing 2,048-bit Shor’s algorithm in less than five months.

REFERENCES
D. Aharonov and M. Ben-Or. 1997. Fault-tolerant quantum computation with constant error Fault-tolerant

quantum computation with constant error Fault-tolerant quantum computation with constant error. In
Proceedings of the 29th Annual Symposium on Theory of Computing. 176–188.

Muhamamd Ahsan, Byung-Soo Choi, and Jungsang Kim. 2013. Performance simulator based on hardware
resources constraints for ion trap quantum computer. In IEEE 31st Internat. Conf. on Computer Design
(ICCD). 411–418.

Muhammad Ahsan and Jungsang Kim. 2015. Optimization of Quantum Computer Architecture Using a
Resource-performance Simulator. In Proceedings of the 2015 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE ’15). EDA Consortium, San Jose, CA, USA, 1108–1113.

P. Aliferis, D. Gottesman, and J. Preskill. 2005. Quantum accuracy threshold for concatenated distance-3
codes. arXiv:quant-ph/0504218 (2005).

Steven Balensiefer, Lucas Kreger-Stickles, and Mark Oskin. 2005. QUALE: quantum architecture layout
evaluator. In Proc. of the SPIE, Vol. 5815. 103–114.

David Beckman, Amalavoyal N. Chari, Srikrishna Devabhaktuni, and John Preskill. 1996. Efficient net-
works for quantum factoring. Phys. Rev. A 54 (1996), 1034–1063.

S. Crain, E. Mount, S.-Y. Baek, and J. Kim. 2014. Individual addressing of trapped 171Y b+ ion qubits using
a microelectromechanical systems-based beam steering system. Appl. Phys. Lett. 105 (2014), 181115.

Steven A Cuccaro, Thomas G Draper, Samuel A Kutin, and David Petrie Moulton. 2004. A new quantum
ripple-carry addition circuit. arXiv:quant-ph/0410184 (2004).

Thomas G Draper, Samuel A Kutin, Eric M Rains, and Krysta M Svore. 2006. A logarithmic-depth quantum
carry-lookahead adder. Quantum Inf. & Comput. 6 (2006), 351–369.

L.-M. Duan, B. B. Blinov, D. L. Moehring, and C. Monroe. 2004. Scaling Trapped Ions for Quantum Compu-
tation with Probabilistic Ion-Photon Mapping. Quant. Inf. Comp. 4 (2004), 165–173.

Austin G Fowler and Lloyd CL Hollenberg. 2004. Scalability of Shor’s algorithm with a limited set of rotation
gates. Physical Review A 70, 3 (2004), 032329.

Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. 2012. Surface codes: To-
wards practical large-scale quantum computation. Phys. Rev. A 86 (2012), 032324. Issue 3.

A. Galiautdinov, A. N. Korotkov, and J. M. Martinis. 2012. Resonator-zero-qubit architecture for supercon-
ducting qubits. Phys. Rev. A 85 (2012), 042321.

B. Giles and P. Selinger. 2013. Exact synthesis of multiqubit Clifford+T circuits. Phys. Rev. A 87 (2013),
032332.

D. Gottesman and I. L. Chuang. 1999. Demonstrating the viability of universal quantum computation using
teleportation and single-qubit operations. Nature 402 (October 1999), 390 – 393.

Nicholas D Guise, Spencer D Fallek, Kelly E Stevens, KR Brown, Curtis Volin, Alexa W Harter, Jason M
Amini, Robert E Higashi, Son Thai Lu, Helen M Chanhvongsak, and others. 2015. Ball-grid array ar-
chitecture for microfabricated ion traps. J. Appl. Phys. 117 (2015), 174901.

P. Papadopoulos J. Eisert, K. Jacobs and M. B. Plenio. 2000. Optimal local implementation of non-local
quantum gates. Phys. Rev. A 62 (2000).

Liang Jiang, J. M. Taylor, Kae Nemoto, W. J. Munro, Rodney Van Meter, and M. D. Lukin. 2009. Quantum
repeater with encoding. Phys. Rev. A 79 (2009), 032325.

M. Juvan and B. Mohar. 1992. Optimal linear labelings and eigenvalues of graphs. Discrete Appl. Math. 36
(1992), 153–168.

J. Kim and C. Kim. 2009. Integrated optical approach to trapped ion quantum computation. Quantum Inf.
& Comput. 9 (2009), 181–202.

J. Kim, C.J. Nuzman, B. Kumar, D.F. Lieuwen, J.S. Kraus, A. Weiss, C.P. Lichtenwalner, A.R. Papazian,
R.E. Frahm, N.R. Basavanhally, D.A. Ramsey, V.A. Aksyuk, F. Pardo, M.E. Simon, V. Lifton, H.B. Chan,
M. Haueis, A. Gasparyan, H.R. Shea, S. Arney, C.A. Bolle, P.R. Kolodner, R. Ryf, D.T. Neilson, and
J.V. Gates. 2003. 1100 X 1100 port MEMS-based optical crossconnect with 4-dB maximum loss. IEEE
Photon. Technol. Lett. 15 (2003), 1537 –1539.

Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K Lenstra, Emmanuel Thomé, Joppe W Bos, Pier-
rick Gaudry, Alexander Kruppa, Peter L Montgomery, Dag Arne Osvik, and others. 2010. Factorization
of a 768-bit RSA modulus. In Advances in Cryptology–CRYPTO 2010. Springer, 333–350.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24 M. Ahsan et al.

V. Kliuchnikov, D. Maslov, and M. Mosca. 2013. Asymptotically Optimal Approximation of Single Qubit
Unitaries by Clifford and T Circuits Using a Constant Number of Ancillary Qubits. Phys. Rev. Lett. 110
(2013), 190502.

C. Knoernschild, X. L. Zhang, L. Isenhower, A. T. Gill, F. P. Lu, M. Saffman, and J. Kim. 2010. Independent
individual addressing of multiple neutral atom qubits with a micromirror-based beam steering system.
Appl. Phys. Lett. 97 (2010), 134101.

T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J.L. O’Brien. 2010. Quantum computers.
Nature 464 (March 2010), 45–53.

T.S. Metodi, D.D. Thaker, A.W. Cross, F.T. Chong, and I.L. Chuang. 2005. A quantum logic array microarchi-
tecture: Scalable quantum data movement and computation. In Proc. 38th Annual IEEE/ACM Internat.
Symp. on Microarchitecture (MICRO-38). 12–23.

C. Monroe and J. Kim. 2013. Scaling the Ion Trap Quantum Processor. Science 339 (2013), 1164.
C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim. 2014. Large scale

modular quantum computer architecture with atomic memory and photonic interconnects. Phys. Rev. A
89 (2014), 022317.

Michael A Nielsen and Isaac L Chuang. 2000. Quantum computation and quantum information. Cambridge
university press.

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe. 2007. Manipu-
lation and detection of a trapped Yb+ hyperfine qubit. Phys. Rev. A 76 (2007), 052314.

P.W. Shor. 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM J. Comput. 26, 5 (1997), 1484–1509.

Andrew M Steane. 1996. Error correcting codes in quantum theory. Physical Review Letters 77 (1996), 793–
797.

Krysta M. Svore, Alfred V. Aho, Andrew W. Cross, Isaac Chuang, and Igor L. Markov. 2006. A Layered
Software Architecture for Quantum Computing Design Tools. Computer 39 (2006), 74–83.

D.D. Thaker, T.S. Metodi, A.W. Cross, I.L. Chuang, and F.T. Chong. 2006. Quantum memory hierarchies:
Efficient designs to match available parallelism in quantum computing. In ACM SIGARCH Computer
Architecture News, Vol. 34. IEEE Computer Society, 378–390.

Rodney Van Meter and Clare Horsman. 2013. A blueprint for building a quantum computer. Commun. ACM
56, 10 (2013), 84–93.

Rodney Van Meter and Kohei M. Itoh. 2005. Fast quantum modular exponentiation. Phys. Rev. A 71 (2005),
052320.

Rodney Van Meter, W. J. Munro, Kae Nemoto, and Kohei M. Itoh. 2008. Arithmetic on a Distributed-memory
Quantum Multicomputer. J. Emerg. Technol. Comput. Syst. 3, Article 2 (2008), 23 pages.

Vlatko Vedral, Adriano Barenco, and Artur Ekert. 1996. Quantum networks for elementary arithmetic op-
erations. Phys. Rev. A 54 (1996), 147–153.

Mark Whitney, Nemanja Isailovic, Yatish Patel, and John Kubiatowicz. 2007. Automated generation of lay-
out and control for quantum circuits. In Proc. of the 4th Internat. Conf. on Computing Frontiers. 83–94.

Mark G Whitney, Nemanja Isailovic, Yatish Patel, and John Kubiatowicz. 2009. A fault tolerant, area ef-
ficient architecture for Shor’s factoring algorithm. ACM SIGARCH Computer Architecture News 37, 3
(2009), 383–394.

Bei Zeng, Andrew Cross, and Isaac L Chuang. 2011. Transversality versus universality for additive quantum
codes. Information Theory, IEEE Transactions on 57, 9 (2011), 6272–6284.

X. Zhou, D. W. Leung, and I. L. Chuang. 2000. Methodology for Quantum Logic Gate Construction. Phys.
Rev. A 62 (2000), 052316.

ACM Journal on Emerging Technologies in Computing Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

	1 Introduction
	2 Quantum Circuits
	2.1 Universal Quantum Gates
	2.2 Benchmark Circuits
	2.2.1 Quantum adders
	2.2.2 Approximate quantum Fourier transform

	3 Quantum Hardware and Quantum Architecture Models
	3.1 Quantum Hardware Model
	3.2 Quantum Architecture Model
	3.3 Dynamic Resource Allocation and Cross-layer Optimization

	4 Tool Description
	4.1 Design Flow and Tool Components
	4.1.1 TDPA
	4.1.2 ADPA

	4.2 Splitting Performance Metrics
	4.3 Tool Validation and Performance

	5 Simulation Results
	5.1 Resource-Performance Scalability
	5.2 Resource-Performance Trade-offs
	5.3 Performance Scaling under Limited Resources
	5.4 Design Optimization by Tuning Device Parameters
	5.4.1 Reducing the execution time
	5.4.2 Reducing the failure probability

	6 Tool enhancements and extensions
	7 Comparison with the related architecture work
	8 Conclusion

